Official Everybody Edits Forums

Do you think I could just leave this part blank and it'd be okay? We're just going to replace the whole thing with a header image anyway, right?

You are not logged in.

#1 2021-11-02 05:08:04

rat
Formerly eleizibeth
Joined: 2017-06-29
Posts: 754

Meth advice

Numbers that have 4 letters:

Four
Five
Nine
Zero

I believe those are all of the base numbers, so you could theoretically find every single number by continuing the chain with those numbers.


Example:

Negative Fifty Six Thousand Five Hundred Sixty Two

Forty Three

Ten

Three

Five

Four


Reverse the process, and you can find Negative Fifty Six Thousand Five Hundred Sixty Two. You also can find what comes after that. The easiest way to do this is to try to stick to the smallest possible amount of letters to make it less stressful (or continue along yours if it's possible). I, however, am not smart enough to do that. BTW I did use a negative. It does 100% end the chain no matter what, but I wanted to use something big. Funny enough, it actually goes up to six. (but I wasn't trying to find one that goes up to 7)

Offline

Wooted by: (3)

#2 2021-11-02 05:09:14

Raphe9000
Member
Joined: 2015-03-16
Posts: 1,856

Re: Meth advice

wtf are u on


698230480755228702.png?v=1

Offline

#3 2021-11-02 05:10:39

rat
Formerly eleizibeth
Joined: 2017-06-29
Posts: 754

Re: Meth advice

math

Offline

#4 2021-11-02 06:25:56

Joeyjoey65
Member
Joined: 2017-11-05
Posts: 314

Re: Meth advice

mm ketamine

Offline

#5 2021-11-02 12:01:51, last edited by NorwegianboyEE (2021-11-02 12:02:21)

NorwegianboyEE
Member
From: Norway
Joined: 2015-03-16
Posts: 3,457

Re: Meth advice

Don't do meth kids. Or you too will end up trying to find random patterns in numbers.


★              ☆        ★        ☆         ★
   ☆    ★                     ★

Offline

Wooted by:

#6 2021-11-03 05:07:32

HydraK90
Member
From: The got damn uhh, the uhhh
Joined: 2021-08-13
Posts: 131

Re: Meth advice

every number comes back to four

pick a number.. any number.. 15? okay,
f i f t e e n
seven letters
s e v e n
five letters
f i v e
four letters
one hundred sixty nine
o n e  h u n d r e d  s i x t y  n i n e
n i n e t e e n
e i g h t
f i v e
f o u r


♡ ~ OwO ~ ♡ ~ ♡ ~ UwU ~ ♡ ~ ♡ ~ OwO ~ ♡
i love you

Offline

Wooted by: (2)

#7 2021-11-03 12:32:57, last edited by Kaleb (2021-11-03 12:37:40)

Kaleb
Formerly Kaleb123
From: California of America
Joined: 2015-02-19
Posts: 1,260

Re: Meth advice

rat wrote:

Numbers that have 4 letters:

Four
Five
Nine
Zero

I believe those are all of the base numbers, so you could theoretically find every single number by continuing the chain with those numbers.


Example:

Negative Fifty Six Thousand Five Hundred Sixty Two

Forty Three

Ten

Three

Five

Four


Reverse the process, and you can find Negative Fifty Six Thousand Five Hundred Sixty Two. You also can find what comes after that. The easiest way to do this is to try to stick to the smallest possible amount of letters to make it less stressful (or continue along yours if it's possible). I, however, am not smart enough to do that. BTW I did use a negative. It does 100% end the chain no matter what, but I wanted to use something big. Funny enough, it actually goes up to six. (but I wasn't trying to find one that goes up to 7)

Dude, nice. I didn't even think of this little fun pattern of the universe xD.

If only calculus was this fun of a concept... //forums.everybodyedits.com/img/smilies/smile



Hmmm, let's see so can this theoretically work with just sentences or regular words?

elephant

eight

five

four


the elephant is enormous

twenty one

nine

four

seems like a pretty deep concept that can transcend basic mathematical terms :O

Offline

#8 2021-11-03 13:49:03

skullz17
Member
Joined: 2015-02-15
Posts: 6,682

Re: Meth advice

HydraK90 wrote:

every number comes back to four

pick a number.. any number.. 15? okay,
f i f t e e n
seven letters
s e v e n
five letters
f i v e
four letters
one hundred sixty nine
o n e  h u n d r e d  s i x t y  n i n e
n i n e t e e n
e i g h t
f i v e
f o u r

Thanks I honestly had no idea what OP meant until you posted this. However since I'm not a meth addict I don't think this is neat at all.


m3gPDRb.png

thx for sig bobithan

Offline

Wooted by: (2)

#9 2021-11-05 06:02:38

NoNK
Member
Joined: 2019-07-13
Posts: 685

Re: Meth advice

seems reasonable. now prove it.

Offline

Wooted by:

#10 2021-11-10 19:20:11

Null
Member
From: Canada
Joined: 2015-02-15
Posts: 257
Website

Re: Meth advice

FnozjvG.png
i love these words laid out like that


EE Pics
______

Offline

Wooted by:

#11 2021-11-13 02:36:32

N1KF
Wiki Mod
Joined: 2015-02-15
Posts: 10,378
Website

Re: Meth advice

NoNK wrote:

seems reasonable. now prove it.

To make this easier to understand, let's give numbers three qualities: value (the actual meaning of the number), length (in letters), and value:length ratio.

OP is right because four is the only number that has a 1:1 length:value ratio.

Think about it. Once you go above four, every single number goes below 1:1. That means the length goes to a lower value, creating a chain that goes all the way to four or lower. If you go below four, it goes back up because one and two go to three, which goes to five, which goes down to four. So it always goes back to four.

But maybe you're thinking if we go high enough, the number word will be convoluted and long enough to break the ratio. So let's make the longest number word we can.

Here's a chart of what numbers add to what length:

+3 one
+5 three
+7 thirteen
+7 hundred
+8 thousand
+7 million
+7 billion
+8 trillion
etc.
  101 (        3 + 7 + 5) onehundredthree
  113 (        3 + 7 + 7) onehundredthirteen
 1101 (3 + 8 + 3 + 7 + 5) onethousandonehundredthree
 1113 (3 + 8 + 3 + 7 + 7) onethousandonehundredthirteen
 1301 (3 + 8 + 5 + 7 + 5) onethousandthreehundredthree
 1313 (3 + 8 + 5 + 7 + 7) onethousandthreehundredthirteen

See where I'm going with this? If we can only add so little to the length, there's no way we can outpace the value of the actual number. We're exponentially going lower, and we always have a number short enough in length to return to four.


everybody edits FOREVER eddd8d8a85fc6033a2a3012ae17a5b52

Offline

#12 2021-11-15 01:55:40

HydraK90
Member
From: The got damn uhh, the uhhh
Joined: 2021-08-13
Posts: 131

Re: Meth advice

sixty nine funny


♡ ~ OwO ~ ♡ ~ ♡ ~ UwU ~ ♡ ~ ♡ ~ OwO ~ ♡
i love you

Offline

#13 2021-11-19 09:11:04

luz
Member
Joined: 2021-08-09
Posts: 23

Re: Meth advice

hi rat!

i would

thanks, luz


when the doesn't just can't n you're at a loss for words

Offline

Wooted by:

rat

#14 2021-11-25 07:03:53

Pqwerty
Member
From: 'Murica
Joined: 2015-10-09
Posts: 1,032

Re: Meth advice

this is giving me Look-and-say numbers vibes.

Offline

Wooted by:

rat

#15 2021-11-26 01:27:57, last edited by hummerz5 (2021-11-26 01:31:30)

hummerz5
Member
From: wait I'm not a secret mod huh
Joined: 2015-08-10
Posts: 5,841

Re: Meth advice

I like where n1kf is going with this. What would it take to make a legit mathematical proof of this?

It'd take proof by induction because of the repetition and the building on itself. (Right?)

To establish our base case, I imagine we'd need to prove enough beginning numbers to show what N1KF is pointing out. Mainly, that no addition to a given number string can 'jump over' our pool of known sequences leading to four.

So, what's the biggest jump we'd have to account for, the biggest change that could not be broken down in the middle. I.e., going from eighty-four million to nine hundred eighty four million ...  we get a few more characters, but we have an interim point of "one hundred eighty four million"

Just some more thoughts. I suppose I'm missing the argument as to why we can assume that subdividing jumps allows us to conclude we have the otherwise max-jump size.

edit: wait, I'm looking at this all wrong.

Offline

#16 2021-11-26 02:58:21

skullz17
Member
Joined: 2015-02-15
Posts: 6,682

Re: Meth advice

Jumping 100 numbers ahead was fine as an informal way to show N1KF's point, but I think a formal proof should just use increments of 1 like any other induction, otherwise things probably get unnecessarily convoluted.

It would be sufficient to prove that every number greater than 4 is greater than the length of its text equivalent, because this would mean the pattern would be strictly reducing until you get to 4 or below, then as we've already shown it will just go back to 4.

It would be a proof by induction with a bunch of cases to handle based on the way we encode numbers to text.

Each case would affect the gap between the number and the length of the string, either making it bigger or smaller. If the gap gets bigger or stays the same (string gets smaller, stays the same or goes +1), then the assumption holds. If it gets smaller (string gets bigger by more than 1), then we have to prove that the gap doesn't close, i.e. that the number is still greater than the length of the string. That probably either requires us to prove a lower bound for the gap for each case where this happens, or we actually have to extend the assumption include a lower bound on the gap and do induction on that as well. I suspect the latter could work because it seems like the gap generally gets bigger, even if it fluctuates at times, so we assume a lower bound and just make sure the fluctuations are never big enough to make the gap close.

Something I can observe is that most of the increases in string size happen in the numbers 1-19. 2 digit numbers higher than that are the same as incrementing from 1-9. 3 digit numbers are encoded the same as 2 digit numbers but with some extra words in front, so we see the same pattern. It looks like incrementing a number ending in 9 is always non-increasing string-wise. Adding a new digit (99 -> 100, 999 -> 1000, etc.) is also non-increasing string-wise, since a bunch of digits become 0. Hopefully it's clear that there's a finite amount of stuff to prove here, since the encoding is systematic and you can kind of generalise it. Though technically every 3 digits we are adding a new word (thousand, million, billion, trillion, ...), which kind of needs a limit. If my observation is right then you only need to handle increases in string size in numbers 1-19, and show that those fluctuations get "corrected" and will never be big enough to close the gap for numbers over x. Just have to show all this stuff formally and you have your proof.


m3gPDRb.png

thx for sig bobithan

Offline

#17 2021-11-27 09:36:40

luz
Member
Joined: 2021-08-09
Posts: 23

Re: Meth advice

i love meth


when the doesn't just can't n you're at a loss for words

Offline

luz1638002200792029

Board footer

Powered by FluxBB

[ Started around 1638635003.6439 - Generated in 0.042 seconds, 12 queries executed - Memory usage: 1.6 MiB (Peak: 1.8 MiB) ]