Equivalence principle
The equivalence principle, explored by a succession of researchers including Galileo, Loránd Eötvös, and Einstein, expresses the idea that all objects fall in the same way, and that the effects of gravity are indistinguishable from certain aspects of acceleration and deceleration. The simplest way to test the weak equivalence principle is to drop two objects of different masses or compositions in a vacuum and see whether they hit the ground at the same time. Such experiments demonstrate that all objects fall at the same rate when other forces (such as air resistance and electromagnetic effects) are negligible. More sophisticated tests use a torsion balance of a type invented by Eötvös. Satellite experiments, for example STEP, are planned for more accurate experiments in space.[23]
Formulations of the equivalence principle include:
The weak equivalence principle: The trajectory of a point mass in a gravitational field depends only on its initial position and velocity, and is independent of its composition.[24]
The Einsteinian equivalence principle: The outcome of any local non-gravitational experiment in a freely falling laboratory is independent of the velocity of the laboratory and its location in spacetime.[25]
The strong equivalence principle requiring both of the above.
General relativity
See also: Introduction to general relativity
Two-dimensional analogy of spacetime distortion generated by the mass of an object. Matter changes the geometry of spacetime, this (curved) geometry being interpreted as gravity. White lines do not represent the curvature of space but instead represent the coordinate system imposed on the curved spacetime, which would be rectilinear in a flat spacetime.
In general relativity, the effects of gravitation are ascribed to spacetime curvature instead of a force. The starting point for general relativity is the equivalence principle, which equates free fall with inertial motion and describes free-falling inertial objects as being accelerated relative to non-inertial observers on the ground.[26][27] In Newtonian physics, however, no such acceleration can occur unless at least one of the objects is being operated on by a force.
Einstein proposed that spacetime is curved by matter, and that free-falling objects are moving along locally straight paths in curved spacetime. These straight paths are called geodesics. Like Newton's first law of motion, Einstein's theory states that if a force is applied on an object, it would deviate from a geodesic. For instance, we are no longer following geodesics while standing because the mechanical resistance of the Earth exerts an upward force on us, and we are non-inertial on the ground as a result. This explains why moving along the geodesics in spacetime is considered inertial.
Einstein discovered the field equations of general relativity, which relate the presence of matter and the curvature of spacetime and are named after him. The Einstein field equations are a set of 10 simultaneous, non-linear, differential equations. The solutions of the field equations are the components of the metric tensor of spacetime. A metric tensor describes a geometry of spacetime. The geodesic paths for a spacetime are calculated from the metric tensor.
Solutions
Notable solutions of the Einstein field equations include:
The Schwarzschild solution, which describes spacetime surrounding a spherically symmetric non-rotating uncharged massive object. For compact enough objects, this solution generated a black hole with a central singularity. For radial distances from the center which are much greater than the Schwarzschild radius, the accelerations predicted by the Schwarzschild solution are practically identical to those predicted by Newton's theory of gravity.
The Reissner-Nordström solution, in which the central object has an electrical charge. For charges with a geometrized length which are less than the geometrized length of the mass of the object, this solution produces black holes with double event horizons.
The Kerr solution for rotating massive objects. This solution also produces black holes with multiple event horizons.
The Kerr-Newman solution for charged, rotating massive objects. This solution also produces black holes with multiple event horizons.
The cosmological Friedmann-Lemaître-Robertson-Walker solution, which predicts the expansion of the Universe.
Tests
The tests of general relativity included the following:[28]
General relativity accounts for the anomalous perihelion precession of Mercury.[29]
The prediction that time runs slower at lower potentials (gravitational time dilation) has been confirmed by the Pound–Rebka experiment (1959), the Hafele–Keating experiment, and the GPS.
The prediction of the deflection of light was first confirmed by Arthur Stanley Eddington from his observations during the Solar eclipse of 29 May 1919.[30][31] Eddington measured starlight deflections twice those predicted by Newtonian corpuscular theory, in accordance with the predictions of general relativity. However, his interpretation of the results was later disputed.[32] More recent tests using radio interferometric measurements of quasars passing behind the Sun have more accurately and consistently confirmed the deflection of light to the degree predicted by general relativity.[33] See also gravitational lens.
The time delay of light passing close to a massive object was first identified by Irwin I. Shapiro in 1964 in interplanetary spacecraft signals.
Gravitational radiation has been indirectly confirmed through studies of binary pulsars. On 11 February 2016, the LIGO and Virgo collaborations announced the first observation of a gravitational wave.
Alexander Friedmann in 1922 found that Einstein equations have non-stationary solutions (even in the presence of the cosmological constant). In 1927 Georges Lemaître showed that static solutions of the Einstein equations, which are possible in the presence of the cosmological constant, are unstable, and therefore the static Universe envisioned by Einstein could not exist. Later, in 1931, Einstein himself agreed with the results of Friedmann and Lemaître. Thus general relativity predicted that the Universe had to be non-static—it had to either expand or contract. The expansion of the Universe discovered by Edwin Hubble in 1929 confirmed this prediction.[34]
The theory's prediction of frame dragging was consistent with the recent Gravity Probe B results.[35]
General relativity predicts that light should lose its energy when traveling away from massive bodies through gravitational redshift. This was verified on Earth and in the Solar System around 1960.
Gravity and quantum mechanics
Main articles: Graviton and Quantum gravity
An open question is whether it is possible to describe the small-scale interactions of gravity with the same framework as quantum mechanics. General relativity describes large-scale bulk properties whereas quantum mechanics is the framework to describe the smallest scale interactions of matter. Without modifications these frameworks are incompatible.[36]
One path is to describe gravity in the framework of quantum field theory, which has been successful to accurately describe the other fundamental interactions. The electromagnetic force arises from an exchange of virtual photons, where the QFT description of gravity is that there is an exchange of virtual gravitons.[37][38] This description reproduces general relativity in the classical limit. However, this approach fails at short distances of the order of the Planck length,[36] where a more complete theory of quantum gravity (or a new approach to quantum mechanics) is required.
https://en.wikipedia.org/wiki/Gravity